- I Organizational
 - ·Intro
 - · Lectures
 - · Excercises -> try to do them yourself!
 - · Exam
 - · Notes /Books / questions
 Los Saulson and L.L.

I Motivation:

~ Electromagnetic waves in everyday

Jund. Heoretteel plusses)

Ili Dutline of the course:

- · Maxwell equations
- · Methods gor solving ~ Greens Junctions
 [complex calculus]
- · Radon Hon of EM waves

- · Multipole expansion [tensors]
- · EM gields in Medium
- · Lorent 7 transformations (4-vectors)
- · Covariant gornulation og ED
- · Action principle

IV Lecture 1: Maxwell Equations

O. Vector calculus

FJ = Dife: - gradient [in Carteslay word.]

V. A = D. A: - livergence

(A·B) = A:B; summation over repeated indices.

Vector = string of numbers \vec{A} = (a_1, a_2, a_3)

Sijk ~ E-tensor 3×3×3 telble og numbers

E123 = 1, July - anti-symmetric

Ceurl:
$$\vec{\nabla} \times \vec{A} = \Sigma_{ijk} \vec{\nabla}_{ij} A_{k} e_{i}$$

Laplacdan;

Gauss theorem

Stokes the over

Maxwell equations:

$$\overrightarrow{\nabla} \cdot \overrightarrow{E} = \mathcal{L}$$

$$\overrightarrow{\nabla} \times \overrightarrow{B} = \mu_0 \overrightarrow{S} + \mu_0 \mathcal{L} \cdot \overrightarrow{S} +$$

Mo= 4TT.107 N.A? magnetic permeability
of the vacuum

E = 8.85.10 A.S electric perul Hority V. m of the vacuum

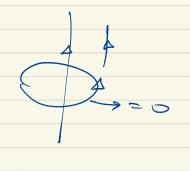
Lorentz Jooce $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$

- · Together these 8+3 differential equations determine the dynamics in CED
- · We will study them for the next 3 months

In the last lecture we will berive M.E. from some more gundamental principles, but for most of the course we postulate them and study consequences

Most basic consequences:

1. Coulsonb Jorce


B=0,3=0

F.F. S. FxE =0

E(+)= 9 F (spherical sym. +
4TE T 3
+ Gauss theorem

P = 90 = 3

Many particles: $E(r) = \frac{9(r-r_i)}{4\pi\epsilon_0 + r_{11}^3}$

take a wire along 2 direction.

Ampiere's Jooce

(Jollows grow borentz gonce)

Note similarity current ~ charge 3. Induction

BE. De = - 1 20 Ds $\nabla \times \vec{E} = -\frac{\partial G}{\partial T}$ E 24°s 9s - magnetic flux through surface S Time-varying magnetie flux generates elector mother Jorce & around the Boundary. This may generate a current in the wire. 4. Charge conservation I 7. E = P. $\overline{\Pi} \quad \overline{\exists} \times \overline{B} = \mu_0 \overrightarrow{\exists} + \mu_0 \varepsilon_0 \underbrace{\partial \overline{E}}_{\partial +}$ J.JxB z disikd, B = Eight Di Di B = 0 sym. sym act with From I and of on I:

$$\partial_{+}\overrightarrow{\partial}\cdot\overrightarrow{E} = \frac{\dot{9}}{2}$$
 $g_{0}\overrightarrow{\partial}\cdot\overrightarrow{S} + g_{0}\underline{S}, \overrightarrow{J}\cdot\overrightarrow{\partial}_{+}\overrightarrow{E} = S$
 $\overrightarrow{J}\cdot\overrightarrow{S} + \overrightarrow{p} = S \rightarrow \text{this is the}$

differential form of charge conservation

o I) we integrate it over a volume V and use Gauss theorem we get:

5. E.M. waves

Consider ME in
$$\partial + \left[\overrightarrow{J} \times \overrightarrow{B} = \mu \cdot \Sigma \circ \overrightarrow{\partial F} \right]$$

Vacuum: $\overrightarrow{J} \times \left[\overrightarrow{J} \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial F} \right]$

₹·Ē= 0.